Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.517
Filtrar
1.
An. psicol ; 40(2): 323-334, May-Sep, 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-VR-578

RESUMO

Las percepciones de olvidos recurrentes o episodios de distracción en la vida diaria se denominan quejas subjetivas de memoria (QSM). Su naturaleza se ha estudiado ampliamente en adultos mayores, pero su importancia y relación con el rendimiento neurocognitivo no se han abordado por completo en adultos más jóvenes. Se han sugerido algunos rasgos psicológicos como posibles moderadores de la asociación entre el rendimiento de la memoria objetiva y subjetiva. El primer objetivo de este estudio fue analizar la correspondencia entre la percepción objetiva y subjetiva de los fallos de memoria en jóvenes. En segundo lugar, estudiamos si el rasgo psicológico del neuroticismo podría estar influyendo en esta relación. Para ello, medimos QSM, diferentes dominios cognitivos (memoria episódica y de trabajo y funciones ejecutivas) y neuroticismo en 80 hombres y mujeres jóvenes. Los resultados mostraron que solo la memoria episódica inmediata estaba estadísticamente relacionada con los QSM. Curiosamente, las relaciones negativas entre el rendimiento de la memoria objetiva y subjetiva solo aparecieron en participantes con mayor neuroticismo. Por lo tanto, las quejas de memoria reportadas por los jóvenes podrían reflejar un peor rendimiento de la memoria episódica inmediata, mientras que el neuroticismo jugaría un papel principal en la asociación entre los déficits de memoria y las QSM. Este estudio proporciona datos que pueden ayudar a comprender mejor las QSM en los jóvenes.(AU)


Perceptions of recurrent forgetfulness or episodes of distraction in daily life are referred to as subjective memory complaints (SMCs). Their nature has been extensively studied in older adults, but their significance and relationship with neurocognitive performance have not been fully ad-dressed in younger adults. Some psychological traits have been suggested as possible moderators of the association between objective and subjective memory performance. The first aim of this study was to analyze the corre-spondence between the objective and subjective perception of memory failures in young people. Second, we studied whether the psychological trait of neuroticism could be influencing this relationship. Todo this, we measured SMCs, different cognitive domains (episodic and working memory and executive functions), and neuroticism in 80 young men and women. Results showed that only immediate episodic memory was statisti-cally related to SMCs. Interestingly, the negative relationships between ob-jective and subjective memory performance only appeared in participants with higher neuroticism. Thus, memory complaints reported by young people could reflect poorer immediate episodic memory performance, whereas neuroticism would play a main role in the association between memory deficits and SMCs. This study provides data that can help to bet-ter understand SMCs in young people.(AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Neuroticismo , Memória Episódica , Cognição , Transtornos Neurocognitivos , Memória
2.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661671

RESUMO

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Proteínas Relacionadas a Receptor de LDL , Camundongos Knockout , Selênio , Aprendizagem Espacial , Animais , Camundongos , Selênio/administração & dosagem , Selênio/deficiência , Selênio/farmacologia , Aprendizagem Espacial/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Selenoproteína P/genética , Selenoproteína P/metabolismo , Dieta , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Memória/fisiologia , Memória/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos
3.
Brain Behav ; 14(4): e3488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641879

RESUMO

SIGNIFICANT: Chunk memory is one of the essential cognitive functions for high-expertise (HE) player to make efficient decisions. However, it remains unknown how the neural mechanisms of chunk memory processes mediate or alter chess players' performance when facing different opponents. AIM: This study aimed at inspecting the significant brain networks associated with chunk memory, which would vary between club players and novices. APPROACH: Functional networks and topological features of 20 club players (HE) and 20 novice players (LE) were compared at different levels of difficulty by means of functional near-infrared spectroscopy. RESULTS: Behavioral performance indicated that the club player group was unaffected by differences in difficulty. Furthermore, the club player group demonstrated functional connectivity among the dorsolateral prefrontal cortex, the frontopolar cortex, the supramarginal gyrus, and the subcentral gyrus, as well as higher clustering coefficients and lower path lengths in the high-difficulty task. CONCLUSIONS: The club player group illustrated significant frontal-parietal functional connectivity patterns and topological characteristics, suggesting enhanced chunking processes for improved chess performance.


Assuntos
Encéfalo , Cognição , Encéfalo/diagnóstico por imagem , Memória , Mapeamento Encefálico , Cabeça , Imageamento por Ressonância Magnética
4.
Cell Rep ; 43(4): 114071, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592973

RESUMO

Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.


Assuntos
Emoções , Memória , Neurônios , Humanos , Emoções/fisiologia , Neurônios/fisiologia , Memória/fisiologia , Masculino , Adulto , Feminino , Lobo Temporal/fisiologia , Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Adulto Jovem
5.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607918

RESUMO

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Assuntos
Região CA1 Hipocampal , Interneurônios , Reconhecimento Psicológico , Peptídeo Intestinal Vasoativo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/citologia , Camundongos , Masculino , Reconhecimento Psicológico/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Camundongos Endogâmicos C57BL , Memória/fisiologia , Parvalbuminas/metabolismo , Comportamento Exploratório/fisiologia , Somatostatina/metabolismo
6.
Cell Rep ; 43(4): 114097, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613783

RESUMO

The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.


Assuntos
Medo , Memória , Córtex Pré-Frontal , Animais , Medo/fisiologia , Memória/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética
7.
Elife ; 132024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635312

RESUMO

Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC's recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by 'breaks' in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.


Assuntos
Aves Canoras , Masculino , Animais , Fala , Acústica , Memória , Comportamento Estereotipado
8.
Nat Commun ; 15(1): 3357, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637493

RESUMO

Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.


Assuntos
Córtex Cerebral , Percepção Espacial , Masculino , Animais , Percepção Espacial/fisiologia , Córtex Cerebral/fisiologia , Lobo Parietal/fisiologia , Memória , Cognição , Desempenho Psicomotor/fisiologia
9.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655926

RESUMO

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Assuntos
Drosophila melanogaster , Metabolismo Energético , Octopamina , Animais , Drosophila melanogaster/fisiologia , Octopamina/metabolismo , Memória/fisiologia , Glicogênio/metabolismo , Inanição , Sacarose/metabolismo , Memória de Longo Prazo/fisiologia , Ingestão de Alimentos/fisiologia
10.
Neural Comput ; 36(5): 1022-1040, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658026

RESUMO

A key question in the neuroscience of memory encoding pertains to the mechanisms by which afferent stimuli are allocated within memory networks. This issue is especially pronounced in the domain of working memory, where capacity is finite. Presumably the brain must embed some "policy" by which to allocate these mnemonic resources in an online manner in order to maximally represent and store afferent information for as long as possible and without interference from subsequent stimuli. Here, we engage this question through a top-down theoretical modeling framework. We formally optimize a gating mechanism that projects afferent stimuli onto a finite number of memory slots within a recurrent network architecture. In the absence of external input, the activity in each slot attenuates over time (i.e., a process of gradual forgetting). It turns out that the optimal gating policy consists of a direct projection from sensory activity to memory slots, alongside an activity-dependent lateral inhibition. Interestingly, allocating resources myopically (greedily with respect to the current stimulus) leads to efficient utilization of slots over time. In other words, later-arriving stimuli are distributed across slots in such a way that the network state is minimally shifted and so prior signals are minimally "overwritten." Further, networks with heterogeneity in the timescales of their forgetting rates retain stimuli better than those that are more homogeneous. Our results suggest how online, recurrent networks working on temporally localized objectives without high-level supervision can nonetheless implement efficient allocation of memory resources over time.


Assuntos
Redes Neurais de Computação , Humanos , Modelos Neurológicos , Memória de Curto Prazo/fisiologia , Encéfalo/fisiologia , Memória/fisiologia
11.
Sci Rep ; 14(1): 9433, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658592

RESUMO

Selective retrieval of context-relevant memories is critical for animal survival. A behavioral index that captures its dynamic nature in real time is necessary to investigate this retrieval process. Here, we found a bias in eye gaze towards the locations previously associated with individual objects during retrieval. Participants learned two locations associated with each visual object and recalled one of them indicated by a contextual cue in the following days. Before the contextual cue presentation, participants often gazed at both locations associated with the given object on the background screen (look-at-both), and the frequency of look-at-both gaze pattern increased as learning progressed. Following the cue presentation, their gaze shifted toward the context-appropriate location. Interestingly, participants showed a higher accuracy of memory retrieval in trials where they gazed at both object-associated locations, implying functional advantage of the look-at-both gaze patterns. Our findings indicate that naturalistic eye movements reflect the dynamic process of memory retrieval and selection, highlighting the potential of eye gaze as an indicator for studying these cognitive processes.


Assuntos
Movimentos Oculares , Fixação Ocular , Rememoração Mental , Humanos , Masculino , Feminino , Rememoração Mental/fisiologia , Adulto Jovem , Fixação Ocular/fisiologia , Adulto , Movimentos Oculares/fisiologia , Sinais (Psicologia) , Memória/fisiologia , Aprendizagem/fisiologia
12.
Sci Rep ; 14(1): 9057, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643331

RESUMO

Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Memória/fisiologia , Eletroencefalografia , Sono/fisiologia , Fases do Sono/fisiologia , Consolidação da Memória/fisiologia
13.
J Math Biol ; 88(5): 59, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589609

RESUMO

Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.


Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Comportamento de Retorno ao Território Vital/fisiologia , Memória , Movimento
14.
J Exp Psychol Hum Percept Perform ; 50(5): 498-514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573696

RESUMO

Multitasking typically leads to interference. However, responding to attentionally demanding targets in a continuous task paradoxically enhances memory for concurrently presented images, known as the "attentional boost effect" (ABE). Previous research has attributed the ABE to a temporal orienting response induced by the release of norepinephrine from the locus coeruleus when a stimulus is classified as a target. In this study, we tested whether target classification and response decisions act in an all-or-none manner on the ABE, or whether the processes leading up to these decisions also modulate the ABE. Participants encoded objects into memory while monitoring a stream of letters and digits, pressing a key for target letters. To change the process leading to target classification, we asked participants to respond either to a specific target letter or an entire category of letters. To change the process leading to response, we asked participants to either respond immediately to the target or withhold the response until the appearance of the next stimulus. Despite successfully identifying the target and responding to it in all conditions, participants benefited less from target detection in category search than in exact search and less from delayed response than immediate response. These findings suggest that target and response decisions do not act in an all-or-none manner. Instead, the ABE and the temporal orienting response is sensitive to the speed of reaching a perceptual or response decision. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Atenção , Memória , Humanos , Memória/fisiologia , Atenção/fisiologia
15.
Sci Rep ; 14(1): 7804, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565873

RESUMO

Social transmission of fear occurs in a subset of individuals, where an Observer displays a fear response to a previously neutral stimulus after witnessing or interacting with a conspecific Demonstrator during memory retrieval. The conditions under which fear can be acquired socially in rats have received attention in recent years, and suggest that social factors modulate social transmission of information. We previously found that one such factor, social rank, impacts fear conditioning by proxy in male rats. Here, we aimed to investigate whether social roles as determined by nape contacts in females, might also have an influence on social transmission of fear. In-line with previous findings in males, we found that social interactions in the home cage can provide insight into the social relationship between female rats and that these relationships predict the degree of fear acquired by-proxy. These results suggest that play behavior affects the social transfer/transmission of information in female rats.


Assuntos
Memória , Comportamento Social , Ratos , Animais , Masculino , Feminino , Memória/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Medo/fisiologia , Relações Interpessoais
16.
Sci Rep ; 14(1): 7943, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575698

RESUMO

Memory retrieval entails dynamic interactions between the medial temporal lobe and areas in the parietal and frontal cortices. Here, we tested the hypothesis that effective connectivity between the precuneus, in the medial parietal cortex, and the medial temporal cortex contributes to the subjective quality of remembering objects together with information about their rich spatio-temporal encoding context. During a 45 min encoding session, the participants were presented with pictures of objects while they actively explored a virtual town. The following day, under fMRI, participants were presented with images of objects and had to report whether: they recognized the object and could remember the place/time of encoding, the object was familiar only, or the object was new. The hippocampus/parahippocampus, the precuneus and the ventro-medial prefrontal cortex activated when the participants successfully recognized objects they had seen in the virtual town and reported that they could remember the place/time of these events. Analyses of effective connectivity showed that the influence exerted by the precuneus on the medial temporal cortex mediates this effect of episodic recollection. Our findings demonstrate the role of the inter-regional connectivity in mediating the subjective experience of remembering and underline the relevance of studying memory in contextually-rich conditions.


Assuntos
Memória Episódica , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Memória , Rememoração Mental , Hipocampo , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
17.
J Vis ; 24(4): 3, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558158

RESUMO

The sudden onset of a visual object or event elicits an inhibition of eye movements at latencies approaching the minimum delay of visuomotor conductance in the brain. Typically, information presented via multiple sensory modalities, such as sound and vision, evokes stronger and more robust responses than unisensory information. Whether and how multisensory information affects ultra-short latency oculomotor inhibition is unknown. In two experiments, we investigate smooth pursuit and saccadic inhibition in response to multisensory distractors. Observers tracked a horizontally moving dot and were interrupted by an unpredictable visual, auditory, or audiovisual distractor. Distractors elicited a transient inhibition of pursuit eye velocity and catch-up saccade rate within ∼100 ms of their onset. Audiovisual distractors evoked stronger oculomotor inhibition than visual- or auditory-only distractors, indicating multisensory response enhancement. Multisensory response enhancement magnitudes were equal to the linear sum of responses to component stimuli. These results demonstrate that multisensory information affects eye movements even at ultra-short latencies, establishing a lower time boundary for multisensory-guided behavior. We conclude that oculomotor circuits must have privileged access to sensory information from multiple modalities, presumably via a fast, subcortical pathway.


Assuntos
Encéfalo , Acompanhamento Ocular Uniforme , Humanos , Tempo de Reação/fisiologia , Encéfalo/fisiologia , Movimentos Sacádicos , Memória , Estimulação Luminosa/métodos
18.
Memory ; 32(4): 502-514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557551

RESUMO

Mounting evidence supports the efficacy of mental imagery for verbal information retention. Motor imagery, imagining oneself interacting physically with the object to be learned, emerges as an optimal form compared to less physically engaging imagery. Yet, when engaging in mental imagery, it occurs within a specific context that may affect imagined actions and consequently impact the mnemonic benefits of mental imagery. In a first study, participants were given instructions for incidental learning: mental rehearsal, visual imagery, motor imagery or situated motor imagery. The latter, which involved imagining physical interaction with an item within a coherent situation, produced the highest proportion of correct recalls. This highlights memory's role in supporting situated actions and offers the possibility for further developing the mnemonic potential of embodied mental imagery. Furthermore, item-level analysis showed that individuals who engaged in situated motor imagery remembered words primarily due to the sensorimotor characteristics of the words' referent. A second study investigating the role of inter-item distinctiveness in this effect failed to determine the extent to which the situational and motor elements need to be distinctive in order to be considered useful retrieval cues and produce an optimal memory performance.


Assuntos
Imaginação , Aprendizagem , Rememoração Mental , Humanos , Feminino , Masculino , Adulto Jovem , Rememoração Mental/fisiologia , Adulto , Adolescente , Memória/fisiologia , Sinais (Psicologia)
19.
Sci Rep ; 14(1): 8582, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615053

RESUMO

Human movements are adjusted by motor adaptation in order to maintain their accuracy. There are two systems in motor adaptation, referred to as explicit or implicit adaptation. It has been suggested that the implicit adaptation is based on the prediction error and has been used in a number of motor adaptation studies. This study aimed to examine the effect of visual memory on prediction error in implicit visuomotor adaptation by comparing visually- and memory-guided reaching tasks. The visually-guided task is thought to be implicit learning based on prediction error, whereas the memory-guided task requires more cognitive processes. We observed the adaptation to visuomotor rotation feedback that is gradually rotated. We found that the adaptation and retention rates were higher in the visually-guided task than in the memory-guided task. Furthermore, the delta-band power obtained by electroencephalography (EEG) in the visually-guided task was increased immediately following the visual feedback, which indicates that the prediction error was larger in the visually-guided task. Our results show that the visuomotor adaptation is enhanced in the visually-guided task because the prediction error, which contributes update of the internal model, was more reliable than in the memory-guided task. Therefore, we suggest that the processing of the prediction error is affected by the task-type, which in turn affects the rate of the visuomotor adaptation.


Assuntos
Eletroencefalografia , Retroalimentação Sensorial , Humanos , Aprendizagem , Memória , Movimento
20.
Sci Rep ; 14(1): 8722, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622204

RESUMO

Dreaming is a universal human behavior that has inspired searches for meaning across many disciplines including art, psychology, religion, and politics, yet its function remains poorly understood. Given the suggested role of sleep in emotional memory processing, we investigated whether reported overnight dreaming and dream content are associated with sleep-dependent changes in emotional memory and reactivity, and whether dreaming plays an active or passive role. Participants completed an emotional picture task before and after a full night of sleep and they recorded the presence and content of their dreams upon waking in the morning. The results replicated the emotional memory trade-off (negative images maintained at the cost of neutral memories), but only in those who reported dreaming (Dream-Recallers), and not in Non-Dream-Recallers. Results also replicated sleep-dependent reductions in emotional reactivity, but only in Dream-Recallers, not in Non-Dream-Recallers. Additionally, the more positive the dream report, the more positive the next-day emotional reactivity is compared to the night before. These findings implicate an active role for dreaming in overnight emotional memory processing and suggest a mechanistic framework whereby dreaming may enhance salient emotional experiences via the forgetting of less relevant information.


Assuntos
Sonhos , Memória , Humanos , Sonhos/psicologia , Emoções , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...